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Abstract

In this paper, we address the challenge of multi-agent mixed-
motivation cooperation within the diverse scenarios presented
by the Melting Pot Contest at NeurIPS 2023. The contest’s in-
novative environments test agents’ adaptability to new part-
ners and unforeseen situations, requiring a display of au-
thentic cooperative intelligence for success. We introduce a
deep reinforcement learning framework combining system
design and algorithms. Our method involves a ResNet for vi-
sual processing, a GRU layer for temporal analysis, and an
MLP for estimating action values. This setup allows agents
to construct policies delivering Q values for informed action
choices, guided by a pre-set strategy during societal game
scenarios. We adopt Centralized Training with Decentral-
ized Execution (CTDE) and employ the Value Decomposi-
tion Network (VDN) for cooperative policy development. To
mitigate competition’s negative impacts in non-competitive
settings, we integrate NPC agents in training, which under-
take tasks to enrich the learning environment and boost our
agents’ performance. Tested in the Melting Pot Contest, our
framework proved effective, achieving nuanced cooperation
and earning second place overall.

Introduction
Multi-agent system is a distributed decision-making system
consisting of multiple intelligences interacting with the en-
vironment. It has a wide range of applications in real life,
such as in military, industrial, transportation and other fields,
multi-agent system can efficiently complete the group au-
tonomy decision-making task. For example, in many fields
such as military, industry, and transportation, MAS can
efficiently accomplish group autonomous decision-making
tasks.(Wooldridge 2009). In addition, some complex social
problems, such as resource scheduling, business competi-
tion, financial analysis, group psychology, etc., can also be
abstracted into multi-agent models to solve their agent opti-
mization(Sutton and Barto 2018).

Multi-agent reinforcement learning has become the fo-
cus of MAS researchers, and it greatly facilitates the opti-
mization of MAS models. With the deepening of research,
MARL improves the level of group decision-making on the
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one hand, and enriches the types of tasks performed by mul-
tiple agents on the other. At present, according to the differ-
ent optimization objectives of multi-intelligence, the learn-
ing tasks of multi-intelligence in MARL can be classified
into three types: fully collaborative, fully competitive, and
mixed environments.Multi-Agent cooperation is often more
widely used in real production and operation processes,
where learning cooperation in a narrow sense means that
agents learn to collaborate only through local observation
to achieve common goals.

Melting Pot is composed of a set of test scenarios and a
protocol for using them. A scenario is a multi-agent body
environment that evaluates the ability of a centralized group
of intelligences to generalize to new social situations. Each
scenario is formed by a substrate and a background popu-
lation. The substrate is the physical part of the world: its
spatial layout, where objects are, how they move, the rules
of physics, and so on. The background population is the part
of the simulation that is full of energies, excluding the focal
population (that is, the multi-agent body population that we
train). Although the focal population was in the environmen-
tal matrix during training, it never experienced any of the
individuals in the background population. Thus, the perfor-
mance of the focal population in the test scenarios measures
the generalization ability of its agents in a social context to
which they were not directly exposed during training. The
focus at the time of assessment was therefore on measuring
generalization to a new social partner in a set of normative
test scenarios.

To address these challenges, we designed a deep rein-
forcement learning framework and a set of algorithms. First,
we modified ResNet(He et al. 2016) for the problem sce-
nario to realize the conversion from visual RL to state RL;
we used VDN (Sunehag et al. 2017)to solve the problem
of credit allocation for multiple intelligences; and we used
auxiliary rewards in combination with action mask filter-
ing to realize the macro-statute learning of mixed-motivation
cooperation in a melting pot environment. The model con-
structed by our team is currently in the top 5 in the overall
score list and ranked 1st in the cleanup task.

Related Work
There are two types of environments for multi-agent control
with reinforcement learning: cooperative and competitive



environments. Our work belongs to the latter. Most of the ex-
isting studies have used games as testbeds for RL progress.
At the time of training intelligences are allowed unlimited
access to the background substrate. This means that at the
time of testing the intelligences are usually already famil-
iarized with their physical environment. This is because the
kind of generalization explored in MeltingPot is primarily
along the social dimension, rather than the physical dimen-
sion. This contrasts with most work on generalization in re-
inforcement learning.

We use the term Multi-Agent Population Learning Algo-
rithm (MAPLA) to refer to any training process that pro-
duces a decentralized population of agents capable of in-
teracting with each other at the same time.There is a wide
variety of MAPLA algorithms. Most multi-agent reinforce-
ment learning methods are capable of generating popula-
tions. For example, AlphaGo(Silver et al. 2017), AlphaZero
(Silver et al. 2018), Hide-and-Seek(Baker et al. 2019), and
AlphaStar (Vinyals et al. 2019) etc. use self-gaming schemes
that fall into the MAPLA category, as do recent stud-
ies on DOTA(Berner et al. 2019) and MOBA (Ye et al.
2020) games, as well as MADDPG (Lowe et al. 2017),
LOLA(Foerster et al. 2017), PSRO (Balduzzi et al. 2019),
PSRO (Balduzzi et al. 2019), and Malthusian Reinforce-
ment Learning (Leibo et al. 2018) algorithms all fall under
the MAPLA. it includes both ”centralized training and de-
centralized execution” algorithms and ”fully decentralized”
(decentralized at both training and testing times) algorithms.
Melting Pot evaluates MAPLAs by assessing the degree of
generalization of the population they produce.

Many classical reinforcement learning models use man-
ually encoded information from humans as input to the
model, e.g., for Go, we can define the difference in the num-
ber of remaining pieces between the two sides as an input so
that we can indirectly capture the current probability of win-
ning for both sides, and use this as a way to make a decision
on the next move. However, not all environments are suit-
able for this, for example, in the field of robot control, where
we are likely to have only one camera as input, in which
case extracting useful information from the pixel-level in-
put of the camera becomes somewhat difficult. This type of
reinforcement learning that uses vision directly as input is
called Vision-based RL, as opposed to a model training ap-
proach that uses low-dimensional features for training called
State-based RL. In Melting Pot we face this same challenge,
and our approach extracts the states and actions available in
the reinforcement learning task from the image frames dur-
ing training. available states and actions in the image frames
during training.

Multi-intelligent Reinforcement Learning (MARL) typi-
cally requires the decomposition of a complex problem into
multiple sub-problems, such that each intelligence focuses
only on its own state and actions and cooperates to achieve
the overall goal during training. In order to achieve efficient
decentralized execution of MARL strategies, value factor-
ization methods are widely used in MARL. (Schneider et al.
1999) consider optimizing the sum of individual reward
functions by optimizing local combinations of individual
value functions learned from individual value functions, and

Russell and Zimdars (Russell and Zimdars 2003) sum the
Q-functions of independently learned agents with individual
rewards before greedily performing global action selection
to optimize the total reward. VDN factorizes the value func-
tion as the sum of each agent’s utility.QMIX (Rashid et al.
2020) models the monotonic relationship between individ-
ual utility and the value function. QAtten(Yang et al. 2020)
and REFIL (Hu et al. 2021) use an attention mechanism to
factorize the value function. qTran (Son et al. 2019) trans-
forms the joint state-action value function Qjt into a form
that is easy to factorize by means of linear constraints. ResQ
(Shen et al. 2022) and ResZ transform the value function
or the value distribution into a combination of the principal
and the residual functions. Since QMIX and its successor
algorithms require the use of global states, the introduction
of global states incurs a significant time overhead. For sim-
ple tasks, VDN algorithms are both fast and efficient. Based
on the task characteristics of MeltingPot, we choose a VDN
algorithm that better meets our training needs for value de-
composition.

Background
Markov decision process
In fully observed environments, stationary optimal policies
exist. In partially observed environments, the policy usu-
ally incorporates past agent observations from the history
ht = {a1, o1, r1, ..., at−1, ot−1, rt−1} A practical approach
utilized here, is to parameterize policies using recurrent neu-
ral networks.

We consider a partially observable scenario in which each
agent draws individual observations z ∈ Z according to ob-
servation function O (s, a) : S × A → Z. Each agent has
an action-observation history which it conditions a stochas-
tic policy π The joint policy π has a joint action-value
function: Qπ (st, ut) = Est+1:∞,ut+1:∞ [γRt|st, ut], where
Rt =

∑∞
i=1 γirt+iis the discounted reward.

Multi-Agent Reinforcement Learning
We consider problems where observations and actions are
distributed across d agents, and are represented as d-
dimensional tuples of primitive observations in O and ac-
tions in A. As is standard in MARL, the underlying envi-
ronment is modeled as a Markov game where actions are
chosen and executed simultaneously, and new observations
are perceived simultaneously as a result of a transition to a
new state

Although agents have individual observations and are re-
sponsible for individual actions, each agent only receives
the joint reward, and we seek to optimize Rt as defined
above. This is consistent with the Dec-POMDP framework
(Oliehoek et al., 2008; Oliehoek and Amato, 2016)

Method
Approach Overview
Each agent’s policy is implemented as a concatenation of a
ResNet module, a GRU layer, and an MLP layer. The MLP
layer outputs the Q value of each action. For each society



Figure 1: There are mainly three parts in our solution. Here is the image classification. We use ResNet to make every unit in the
picture into a tensor. Then to make our agents more capable to generalize along social dimesnions, we set some priro strategies
to regularize their actions. Finally, we use a value-decomposition network to solve the problem of credit assignment.

game, we use a pre-defined prior strategy to select the best
action for each agent.

Regarding mixed motivation considerations, we assume
that each agent will engage in cooperative behavior and then
consider their competitive behavior. For cooperative behav-
ior, adopt the popular Centralized Training with Decentral-
ized Execution (CTDE) approach and use the VDN value
factorization method.

In some environments, competitive behaviors could lead
to negative effects because there are no competitors at all.
To address this problem, we added some NPC agents dur-
ing training; these NPC perform some collection activities,
which lead to improved performance of the focused agents.

Our overall framework diagram is shown in Figure 1.

Value Decomposition Networks
By contrast, value decomposition networks (VDNs) (Sune-
hag et al., 2017) aim to learn a joint action-value function
Qtot(τ, u), where τ ∈ T.τn is a joint action observation his-
tory and u is a joint action. It represents Qtot as a sum of
individual value functions one for each agent a, that condi-
tion only on individual action-observation histories:

Qtot(τ, u) =

n∑
i=1

Qi(τ
i, ui; θi)

The loss function in VDN training is:

L(θ) =
b∑

i=1

[
(ytoti −Qtot(τ, u, s; θ))

2
]

where b is the batch size of transitions sampled from the re-
play buffer, ytot = r + γmaxu′Qtot(τ

′
, u

′
, s

′
; θ−) and θ−

are the parameters of a target network as in DQN. Mono-
tonicity can be enforced through a constraint on the rela-
tionship between Qtot and each Qa:

∂Qtot

∂Qa
≥ 0,∀a ∈ A

There are currently more multi-agent value decomposition
methods such as QMIX, Since these algorithms needs the
information of global state and the global state in this en-
vironments are relatively large. Therefore, it is complicated
for us to deal with the relative position between agents, we
use the VDN to decompose.

Agent Network
We use another ReNet to process the observation data, in-
put them into the GRU for long-term memory, and use the
epsilon-Greedy algorithm to select the action with the great-
est value.

Due to the limitation of GPU space, we used ResNet18
and reduced some of the residual connection layers.

The epsilon-Greedy algorithm chooses to explore new
possibilities part of the time and exploit the best known op-
tions part of the time. By adjusting the value of epsilon, the
exploration and exploitation trade-offs can be balanced to
suit different problems and environments.

Action at time(t) =

{
maxaQt(a), with prob 1− ϵ

any action(a), with prob ϵ

Image classification
In order to facilitate the transformation from Vision-based
Reinforcement Learning (Vision RL) to State-based Rein-
forcement Learning (State RL), the preprocessing of RGB
images obtained from the environment is quintessential.



The 11x11 RGB images are methodically dissected into
smaller blocks. Each block is then processed through a clas-
sification algorithm employing a Residual Neural Network
(ResNet) architecture, which is adept at identifying the cat-
egorical nature of items depicted in the images.

To streamline this process, a dataset comprising 1000
timesteps randomly sampled from environmental interac-
tions is compiled, with each timestep representing an in-
dividual RGB image. These images are then meticulously
annotated by domain experts, providing accurately labeled
data to underpin the supervised learning tasks. This work is
instrumental in translating the complex visual inputs into a
structured state representation that can be effectively utilized
for state-based reinforcement learning algorithms.

Generalization training
In the MeltingPot environment, which features background
players, it is imperative for agents to learn mixed-motivation
strategies to navigate the complex interplay of cooperative
and competitive dynamics. However, the prevalence of com-
petitive behaviors in the absence of actual competitors can
have deleterious effects on the cohesion and overall perfor-
mance of the agents. To mitigate this issue and enhance the
generalization capabilities of our agents, we introduced non-
player characters governed by rudimentary artificial intelli-
gence algorithms into the environment. Here are some set-
tings for generalization training.

Environment Focal Background

Allelopathic Harvest 6 2
Clean Up 4 1

Prisoners Dilemma in the matrix 7 1
Territory:Rooms 1 0

Table 1: Training population configuration

These robots with simple intelligence serves as a cata-
lyst for the agents to develop nuanced strategies that are not
overly specialized to particular opponent types, thereby en-
hancing their versatility and efficacy in the MeltingPot envi-
ronment.

Prior Strategies
For each environment, we apply different prior strategies for
competitive/cooperative behaviors.

Allelopathic Harvest This environment is as shown in
Figure 2. A challenging problem in this environment is how
to distinguish the focal players from background players. So
we considered a interesting strategy. When the berries are
uniform in color, the focal player changes its color to an un-
popular blue color, thereby distinguishing the focal players
from the background players.

Clean Up This environment is as shown in Figure 3. We
give certain penalties to players that stay in open space,
empty orchard, and clean rivers and add a selfish background
player during training to motivate the player’s behavior. In

this environment, we basically did not adopt any other prior
strategies.

Prisoners Dilemma in the matrix This environment is
as shown in Figure 4. We want the focal players to co-
operate with other focal players but weakly cooperate or
even strongly defect other background players. We want the
player’s strategy to be as pure as possible. when each player
is born, its strategy is defined as either cooperation or defec-
tion, and it will only collect resources that are the same as its
strategy. In order to prevent the focal players from defecting
each other, we set the focal players that choose the defect
strategy to be unable to actively interact.

Territory:Rooms This environment is as shown in Figure
5. In our opinion, the players in this environment should be
extremely aggressive. We found a way to differentiate the fo-
cal players from the background players. At the beginning,
players only color the walls in the middle of the four di-
rections. During this process, we can identify focal players
who behave similarly from observations. After completing
this operation, we can proceed with the normal activities,
trying to encroach on the territory of other players.

Experiment
The Melting Pot framework comprises test scenarios and a
corresponding protocol designed to assess the generalization
abilities of a specific group of agents in diverse social situa-
tions. Each scenario is composed of a substrate, representing
the physical aspects of the environment, and a background
population, which possesses agency but is distinct from the
focal population undergoing evaluation. During training, the
focal population interacts with the substrate, but it never en-
counters individuals from the background population. The
goal is to evaluate how well the focal population’s agents
can adapt to and generalize in novel social situations that
were not part of their direct training experiences.

To contextualize the range of agent returns, the focal re-
turns are normalized to get a performance score that is be-
tween 0 (for the worst agent) and 1 (for the best agent).

Allelopathic Harvest
In Allelopathic Harvest, there are three berry varieties: red,
green, and blue. The ripening rate of each variety depends on
its proportion in the total. The goal for the sixteen players is
to increase the overall ripening rate by adjusting the propor-
tions, considering their individual preferences for a specific
berry variety.

However, the red and blue serial numbers were reversed
during the visualization process. We were not able to dis-
cover this problem until the last day of the competition, so
we achieved quite poor performance in this environment.

Clean Up
Clean Up is a seven-player game where players earn re-
wards by collecting apples in an orchard. The orchard’s ap-
ple growth rate is inversely related to river cleanliness, with
pollution accumulating at a constant rate. There’s a conflict
between short-term individual incentives to collect apples



Figure 2: Allelopathic Harvest Figure 3: Clean Up Figure 4: Pd in the matrix Figure 5: Territory:Rooms

and the long-term group interest in maintaining a clean river
for continuous apple growth.

We achieve better performance because our multi-agent
reinforcement learning method promotes cooperation be-
tween agents well.

Prisoners Dilemma in the matrix
In this scenario, each player’s reward is based on the ex-
pected payoff from a mixed strategy in the matrix game, de-
termined by their inventory objects. Resources correspond
one-to-one to pure strategies, and the mixed strategy de-
pends on the resources a player picks up. The environment is
similar to the Prisoner’s Dilemma, highlighting the tension
between individual and group rewards in this eight-player
game. The matrix for the interaction is

Arow = AT
col =

∣∣∣∣3 0
5 1

∣∣∣∣
In this environment, the difference between everyone’s

scores is not clear, and there should be better strategies wait-
ing for us to discover.

Territory:Rooms
In this scenario, players can claim resources by touching
them or using a claiming beam. Claimed resources pro-
vide stochastic rewards to the claiming player. Zapping a re-
source twice permanently destroys it, removing its function
as a wall or resource. Players hit by a zapping beam are per-
manently removed from the game, with claimed resources
reverting to an unclaimed state.

Our prior strategy can distinguish the background popu-
lation and the focus population, avoid the battle of the focus
population, and therefore achieve better results.

Conclusion
In this paper, we have investigated the complex landscape of
multi-agent mixed-motivation cooperation within the con-
text of the NeurIPS 2023 Melting Pot Contest. The deep re-
inforcement learning framework we proposed has demon-
strated efficacy by securing the runner-up position in the
final round, signifying a substantial contribution to the ad-
vancement of cooperative intelligence in AI. Technically,
our integration of an enhanced ResNet with GRU and MLP
layers to formulate agent policies, combined with the CTDE

Figure 6: Our team achieved an overall second-place rank-
ing, with standout performances in the ”Clean up” and
”Room” tasks, yet faced challenges in the ”Harvest” task due
to a color-coding error, affecting our scores. We performed
comparably to top teams in the ”PD” scenario.

strategy and VDN value decomposition, has proven to be
particularly effective in fostering adaptability and coopera-
tive strategies among unknown entities.

Our approach has identifiable shortcomings in orientation
perception, visualization configuration, and the accuracy of
adversarial prediction, highlighting the limitations of our
current research. Addressing these issues is a priority for
our future work, as we strive to enhance the performance
and adaptability of AI systems in complex environments
through these improvements. Despite these challenges, we
have made significant strides in the field of cooperative in-
telligence and look forward to further expanding upon these
achievements in future research.

Achieving second place in the Melting Pot Contest under-
scores the robustness of our approach, demonstrating its ca-
pacity to handle dynamic cooperative contexts and to com-
pete at an international level against state-of-the-art method-
ologies. This accomplishment not only reflects the depth and
practicality of our research but also paves the way for future
endeavours in effective multi-agent cooperation in unknown
and dynamic settings.
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